Code: 20ES1303

II B.Tech - I Semester – Regular / Supplementary Examinations DECEMBER 2023

MATERIAL SCIENCE AND METALLURGY (MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	1		1	1	1				
			BL	СО	Max. Marks				
UNIT-I									
1	Dis	cuss about the Mechanical and Technological	L2	CO1	14 M				
	Pro	perties of Engineering Materials.							
OR									
2	Des	scribe the various imperfections in crystals	L2	CO1	14 M				
	and	their effects on properties.							
UNIT-II									
3	a)	What is single component phase diagram?	L2	CO2	7 M				
		Explain with suitable neat diagram.							
	b)	Tabulate types of reactions in binary phase	L2	CO2	7 M				
		diagrams.							
OR									
4	Dra	w and explain the Fe-Fe ₃ C phase diagram	L2	CO2	14 M				
	and invariant reactions.								
Page 1 of 2									

		UNIT-III							
5	a)	What are heat treatment processes? Explain briefly.	L2	CO3	7 M				
	b)	Draw a diagram of critical cooling rate on TTT diagram and briefly explain it.	L2	CO3	7 M				
OR									
6	Wh	at are TTT diagrams? How they are pared? What is their significance?	L2	CO3	14 M				
UNIT-IV									
7	Exp iron	plain the structure and properties of white cast	L2	CO4	14 M				
	OR								
8	Eva	aluate Grey cast iron structure and properties.	L2	CO4	14 M				
UNIT-V									
9		at is meant by composite material? Explain	L2	CO5	14 M				
	its 1								
	special features of metal matrix composite over								
	polymer matrix composite.								
10		OR	Τ.Ο.	005	7.14				
10	a)	Explain the structure and properties of Aluminum and its alloys.	L2	CO5	7 M				
	b)	List out the types of Titanium Alloys and its applications.	L2	CO5	7 M				
	Page 2 of 2 PVP 20								